Parallel patch clamp of alpha 7 nicotinic acetylcholine receptor channels


SfN 2007


SĂžren Friis, Morten Sunesen, Chris Mathes, Mark Bowlby, John Dunlop, Niels Willumsen



The human α7 nicotinic acetylcholine receptor (α7-nAChR) is a neuronal ligand-gated, fast desensitizing, non-selective cation channel. It is pentahomomeric, consisting of five 50 kD α7 subunits, each composed of 502 amino acids. The α7-nAChR is involved in memory and cognition, and it is widely distributed throughout the nervous system, especially in cholinergic neurons projecting to hippocampus and cortex. The α7-nAChR has also been found to be associated with pathophysiological states. Importantly, it is involved in widespread human neuro-degenerative and psychotic disorders, including Alzheimer’s disease and schizophrenia. Therefore the therapeutic potential of α7-nAChR is substantial, and electrophysiological and pharmacological characterization of the receptor has become an increasingly important issue. The fast kinetics (milliseconds) makes precise patch clamp measurements a challenging task. The present study addresses the possibility of efficient and precise characterization of α7-nAChR function and pharmacology by means of the QPatch automated patch clamp system. Compared to conventional whole-cell patch clamp the system enables a highly increased throughput by simultaneous and asynchronous operation of 16 parallel patch clamp experiments.

Go to journal

Get in Touch

We strive to provide the best for our customers, and we are always ready to help. Please let us know if you have a question for us.

Follow us