Endogenous Ion Channels of Mammalian Cell Lines Characterization
Journal
Sophion Bioscience
Author(s)
Year
2008
A large number of mammalian cell lines are commercially available to be used as expression systems for membrane or cytoplasmal proteins. A number of voltage and ligand gated ion channels of potential interest for the pharmaceutical industry are endogenously expressed in several CNS and non-CNS cell lines including TTX-sensitive Na+ channels, Ca2+-release activated Ca2+ (CRAC) channels, inward rectifier K+ channels, acid-sensing ion channels (ASIC) and muscarinic alpha-adrenergic receptors mAChR). We have explored the applicability of five commonly employed cell lines from American Type Culture Collection (ATTC) for use with Sophions QPatchTM automated patch clamp systems (QPatch 16 and QPatch HT) and characterized the ion channel types that they endogenously express. Specificly we have explored:
- Suitability for automated patch clamp studies
(âpatchabilityâ) - Background ionic currents that may interfere
with currents of experimentally expressed ion
channels - Possible use for characterizing ion channels of
interest without the need to experimentally
introduce their genes (expression)
The tests have led to the development of a number of simple standard operation procedures (SOPs) for employment of the cell lines in QPatch characterizations of ion channels.