TOPIC

Design, Synthesis, and Biological Evaluation of Heterocyclic-Fused Pyrimidine Chemotypes Guided by X-ray Crystal Structure with Potential Antitumor and Anti-multidrug Resistance Efficacy Targeting the Colchicine Binding Site

Journal

Journal of Medicinal Chemistry

Author(s)

Tan, L., Wu, C., Zhang, J., Yu, Q., Wang, X., Zhang, L., Ge, M., Wang, Z., Ouyang, L., & Wang, Y. (2023). Design, Synthesis, and Biological Evaluation of Heterocyclic-Fused Pyrimidine Chemotypes Guided by X-ray Crystal Structure with Potential Antitumor and Anti-multidrug Resistance Efficacy Targeting the Colchicine Binding Site. Journal of Medicinal Chemistry, 66(5), 3588–3620.

Year

2023

Herein, a series of quinazoline and heterocyclic fused pyrimidine analogues were designed and synthesized based on the X-ray co-crystal structure of lead compound 3a, showing efficacious antitumor activities. Two analogues, 15 and 27a, exhibited favorable antiproliferative activities, which were more potent than lead compound 3a by 10-fold in MCF-7 cells. In addition, 15 and 27a exhibited potent antitumor efficacy and tubulin polymerization inhibition in vitro. 15 reduced the average tumor volume by 80.30% (2 mg/kg) in the MCF-7 xenograft model and 75.36% (4 mg/kg) in the A2780/T xenograft model, respectively. Most importantly, supported by structural optimization and Mulliken charge calculation, X-ray co-crystal structures of compounds 15, 27a, and 27b in complex with tubulin were resolved. In summary, our research provided the rational design strategy of colchicine binding site inhibitors (CBSIs) based on X-ray crystallography with antiproliferation, antiangiogenesis, and anti-multidrug resistance properties.

Go to journal

Get in Touch

We strive to provide the best for our customers, and we are always ready to help. Please let us know if you have a question for us.

Follow us