µ-Conotoxins Targeting the Human Voltage-Gated Sodium Channel Subtype NaV1.7




Kirsten L McMahon, Hue N T Tran, Jennifer R Deuis, David J Craik, Irina Vetter, Christina I Schroeder



µ-Conotoxins are small, potent, peptide voltage-gated sodium (NaV) channel inhibitors characterised by a conserved cysteine framework. Despite promising in vivo studies indicating analgesic potential of these compounds, selectivity towards the therapeutically relevant subtype NaV1.7 has so far been limited. We recently identified a novel µ-conotoxin, SxIIIC, which potently inhibits human NaV1.7 (hNaV1.7). SxIIIC has high sequence homology with other µ-conotoxins, including SmIIIA and KIIIA, yet shows different NaV channel selectivity for mammalian subtypes. Here, we evaluated and compared the inhibitory potency of µ-conotoxins SxIIIC, SmIIIA and KIIIA at hNaV channels by whole-cell patch-clamp electrophysiology and discovered that these three closely related µ-conotoxins display unique selectivity profiles with significant variations in inhibitory potency at hNaV1.7. Analysis of other µ-conotoxins at hNaV1.7 shows that only a limited number are capable of inhibition at this subtype and that differences between the number of residues in loop 3 appear to influence the ability of µ-conotoxins to inhibit hNaV1.7. Through mutagenesis studies, we confirmed that charged residues in this region also affect the selectivity for hNaV1.4. Comparison of µ-conotoxin NMR solution structures identified differences that may contribute to the variance in hNaV1.7 inhibition and validated the role of the loop 1 extension in SxIIIC for improving potency at hNaV1.7 when compared to KIIIA. This work could assist in designing µ-conotoxin derivatives specific for hNaV1.7.

Go to journal

Get in Touch

We strive to provide the best for our customers, and we are always ready to help. Please let us know if you have a question for us.

Follow us