Summary

CHO-P2X₃ cells were used on QPatch and gigaseals and the whole cell configuration were obtained. The EC₅₀ values determined by the QPatch Analyzer Software were close to literature values (for Alpha-beta methyl ATP and CTP) and the IC₅₀ value for PPADS was within the expected value.

- CHO-P2X₃ cells sealed well
- Gigaseal and the whole-cell configuration were obtained
- The EC₅₀ values were in line with literature values (for Alpha-beta methyl ATP and CTP)
- The IC₅₀ value for PPADS was within the expected value

Introduction

In this report the applications of the CHO TREx-P2X₃ cell line (hereafter called CHO P2X₃) are described. The purpose was to determine the EC₅₀ value for αβ-methyl ATP, and the IC₅₀ value of PPADS on the P2X₃ receptors. All data presented was obtained with QPatch and analyzed with the QPatch assay software.

Results and discussion

Determination of minimum cycle duration and number of washes

Initial experiments were done to determine the agonist application interval and number of washes to obtain reproducible responses after agonist application (αβ-methyl ATP 1 µM). It was observed that recovery from desensitization was obtained using 6 washes in combination with 360s agonist application interval. (The latter is in QPatch Assay Software terms denoted as minimum cycle duration). Typical current sweeps are shown in Figure 1.

![Fig. 1: Recovery from desensitization of P2X₃ receptors from the agonist αβ-methyl ATP (1 µM applied three times) obtained with cycle duration of 360s and 6 wash periods. The green bar represents the position of the user-defined cursor for current amplitude measurements.](image-url)
EC₅₀ determination of αβ-methyl ATP for P₂X₃ receptors

αβ-methyl ATP dose-response experiments were done with a minimum cycle duration of 360s and 6 washes after each application. Currents from a typical dose-response experiment are shown in Figure 3.

The corresponding Hill fit for the agonist is shown in Figure 4, where the EC₅₀ value was determined to 1.4 µM (mean 1.2 µM ± 0.3, n=27).

IC₅₀ determination of PPADS for P₂X₃ receptors

For IC₅₀ determination of the antagonist PPADS for P₂X₃ receptors, experiments were done with a minimum time between applications of 360s and 6 washes after each application. The PPADS compounds at concentrations of 0.1, 1, 3, 10 and 30 µM were applied sequentially using αβ-methyl ATP (3.3 µM) as the agonist. PPADS was preincubated for 360s prior to adding the PPADS and the αβ-methyl ATP agonist. Typical P₂X₃ currents from a dose-response experiment are shown in Figure 5.
The corresponding Hill fit for the antagonist is shown in Figure 6, where the IC\textsubscript{50} value was determined to 5.7 µM (mean 5.5 µM ± 1.8, n=17 @ 3.3µM αβ-methyl ATP).

Similar results were determined using the agonist, αβ-methyl ATP at a concentration of 1 µM. In these experiments the IC\textsubscript{50} value for PPADS was determined to 6.0 µM ± 1.8, n=19. There was no significant difference regarding the IC\textsubscript{50} value obtained for PPADS with respect to the concentration of the agonist – Figure 7. This confirms that PPADS does not act as a competitive inhibitor as it is also described in the literature (1).

EC\textsubscript{50} determination of CTP for P2X\textsubscript{3} receptors

CTP dose-response experiments were done with a minimum cycle duration of 180s and 6 washes after each application. Currents from a typical dose-response experiment are shown in Figure 8.

The corresponding Hill fit for the agonist is shown in Figure 9, where the IC\textsubscript{50} value was determined to 13.0 µM (mean 11.1 µM ± 3.6, n=9).

![Fig. 6: Hill fit and IC\textsubscript{50} determination PPADS for P2X\textsubscript{3} receptors.](image1)

![Fig. 7: Summary of the IC\textsubscript{50} values for PPADS on P2X\textsubscript{3} receptors obtained with different agonist, αβ-methyl ATP, concentrations. The yellow column represents the cumulated data. The mean IC\textsubscript{50} value for the summarized data was 5.8 µM ± 1.8, n=36, obtained using 4 QPlates.](image2)

![Fig. 8: P2X\textsubscript{3} current sweeps from CTP dose-response experiment. The green bar represents the position of the user defined cursor for current amplitude measurements.](image3)

![Fig. 9: Hill fit and EC\textsubscript{50} determination CTP for P2X\textsubscript{3} receptors.](image4)

Table 1: EC\textsubscript{50} and IC\textsubscript{50} obtained on P2X\textsubscript{3} receptors.

<table>
<thead>
<tr>
<th></th>
<th>EC\textsubscript{50} (µM)</th>
<th>IC\textsubscript{50} (µM)</th>
<th>Literature values (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>αβ-methyl ATP</td>
<td>1.2 ± 0.3</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>CTP</td>
<td>11.1 ± 3.6</td>
<td>17.3</td>
<td></td>
</tr>
<tr>
<td>PPADS</td>
<td>5.8 ± 1.8</td>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

The CHO-P2X$_3$ cells sealed well on the QPatch; gigaseals and the whole-cell configuration were easily obtained, and the average number of completed dose-response experiments pr. QPlate was 10.5 ± 2.9, n=11 QPlates.

The EC$_{50}$ values determined by the QPatch assay software were close to literature values (for Alpha-beta methyl ATP and CTP).

The IC$_{50}$ value for PPADS was within the expected value.

Methods

Cell culture

CHO TREx-P2X$_3$ cells were grown according to the Sophion SOP.

Hexokinase

Hexokinase catalyzes the phosphorylation of D-hexose sugars at the C6 position utilizing ATP as a phosphate source. Having hexokinase in the saline buffer reduce the amount of ATP leaked from cells in order not to have this natural agonist in the cell suspension.

Ringer’s solution

Two EC Ringer’s were prepared and the ringer used for cell preparation contained glucose, but not hexokinase, as the cells sealed better in a ringer without hexokinase. The “reference Ringer”, which was used for wash periods contained glucose and hexokinase.

References: