Optical modulation of ion channels

Kim Bodden1, Peder Skatte-Pedersen1, Jens Henneke1, Daniel Sauter2, Jiaye Zhang3, Sandra Wilson1,3*

1 Sophion Bioscience A/S, Ballerup, Denmark, 2Sophion Bioscience Inc., Woburn, USA, 3 Cranfield University, Precision Engineering Department, SATM, Cranfield UK • Presenting author. Email: swi@sophion.com

Introduction
Optical modulation of ion channels is traditionally studied using a manual patch clamp system combined with a light source. This approach, however, is limited by a very low throughput. In the present work we show data recorded using a 384-well based automated patch clamp system equipped with 384 integrated light sources (Qube Opto 384).

Optogenetics
In this study we evaluated Channelrhodopsin 2 (ChR2), a light-sensitive non-selective cation channel permeable to Na+, K+ and Ca2+ opened upon illumination (Berndt et al., 2012). Furthermore, we employed the chloride-conducting channelrhodopsin (iC++, Govorunova et al., 2015), which was developed from a non-selective cation-conducting channelrhodopsin through a mutational approach.

Optopharmacology
Compound activation by light enables the pharmacological manipulation of receptors, ion channels and other proteins with a high degree of temporal control. We used caged GABA (Rubi-GABA, Zayat et al., 2003) to study the light activation of ligands.

Methods

ChR2/HEK 293, GABAαβγβγ/HEK 293, and iC++/HEK 293 cells were cultured according to the supplier’s description. ChR2 and GABAαβγβγ were stably expressed in the HEK cells whereas iC++ was induced 24 h prior to the experiment. All experiments were carried out at ambient temperature using QChip 384X multi-hole consumables and patched using a standard whole cell protocol.

Extracellular solution:
CaCl2 2 mM, MgCl2 1 mM, HEPES 10 mM, KCl 4 mM, NaCl 145 mM, Glucose 10 mM. pH = 7.4 with NaOH, osmolarity = 305 mOsm with surrope (before adjustment 285 – 295 mOsm).

Intracellular solution for ChR2 experiments:
CsCl 140 mM, EGTA/CsOH 1 mM / 5 mM, HEPES 10 mM, NaCl 10 mM. pH = 7.3 with 3 M CsOH, osmolarity = 320 mOsm with surrope.

Intracellular solution for Rubi-GABA and iC++ experiments:
KCl 90 mM, KF 50 mM, MgCl2 1 mM, HEPES 10 mM, EGTA 11 mM, MgATP 4 mM. pH = 7.35 with KOH, osmolarity = 305 mOsm (before adjustment 280 – 290 mOsm).

Conclusions
With the new optical feature of Qube Opto 384, it was possible to evaluate both light activated ion channels and photoactivated ligands.

Qube Opto 384 is a Qube with 384 individual, built-in light sources (currently at 475 nm) that can modulate ion channels through optogenetic actuators (e.g. channelrhodopsin) or activate compounds (caged compounds).

References

Fig. 1: The ChR2 mediated current could be manipulated in both a light and voltage dependent manner.
A) Typical light-evoked current at a light output intensity of 10%, 20%, 40% and 100% and a holding potential of -90 mV. B) Dose-response relationship for light from 0% to 100% output intensity. C) Fast activation kinetics: Rise time calculated as time from 10 – 90% of maximum current amplitude. Data is represented as mean ± SD of n=12. C) ChR2: Left: Representative light-evoked current traces B) Current-Voltage relationship. The maximum current amplitude plotted against holding potential.

Fig. 2: Chloride conducting channelrhodopsin (iC++)
A) iC++ concentration-response relationship of 10%, 50% and 100%. The holding potential was clamped at -100 mV. B) Dose-response relationship for the peak current of the traces seen left.

Fig. 3: Rubi-GABA is a caged GABA compound activated by visual wavelengths (Rial Verde et al., 2008).

Fig. 4: Photorelease of caged GABA
A) Concentration-response relationship: HEK 293 cells expressing GABAαβγβγ were exposed to varying concentrations of Rubi-GABA (Tricolor), by a 200 ms light pulse (475 nm) at 100% light output. B) Non-cumulative concentration-response curve for Rubi-GABA of a 2-fold dilution series. C) Optical dose-response relationship: GABAαβγβγ expressing cells were exposed to 1 mM Rubi-GABA and GABA was photoreleased. Light pulse: 200 ms D) Intensity-response relationship for Rubi-GABA at intensities of 10%, 33% and 100% light output. Data is represented as mean ± SD of n=12.

Fig. 5: Fast ligand exposure
With the new optical capability of Qube Opto 384 in combination with the microfluidic system of the QChip 384X, the ligand exposure time can be better controlled and drastically reduced. A) Rubi-GABA photoactivation followed by wash-out (200 µM, 100 ms light pulse). B) Uncaging during perfusion: 330 µM Rubi-GABA was washed in and during perfusion, GABA was unaged by a 20 ms light pulse, resulting in an instantaneous washout of unaged GABA.