Structure–Activity Relationship Guided Scaffold Hopping Resulted in the Identification of GLPG4970, a Highly Potent Dual SIK2/SIK3 Inhibitor
Journal
Journal of Medicinal Chemistry
Author(s)
Year
2025
Inhibition of salt-inducible kinases (SIKs) SIK1, SIK2, and SIK3 represents a new potential therapeutic approach for autoimmune and inflammatory disease treatment via modulation of pro-inflammatory and immunoregulatory pathways, particularly inhibition of SIK2 and SIK3. After discovering a new chemotype for SIK inhibition, further optimization of potency, selectivity, ADMET and PK properties resulted in a 1,6-naphtyridine containing molecule GLPG4876 (7). However, 7 was clastogenic when examined in vivo in rat micronucleus assays, preventing further development. Overlay of 7 with GLPG3970 (6) within the SIK3 protein structure inspired the design of pyridine derivatives, leading to the identification of GLPG4970 (8). Compound 8 was negative in genotoxicity screening assays and demonstrated potent SIK2/SIK3 inhibition, for which isoform selectivity was determined in a cellular context. Compound 8 displayed improved potency compared with previously reported SIK inhibitors in biochemical and phenotypic cellular assays, and showed dose-dependent activity in disease-relevant mouse pharmacological models of colitis.
Keywords: Q3 2025