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Introduction: intrinsic electrical activity drives small-cell lung cancer (SCLC) progression Methods

SCLC is an aggressive form of neuroendocrine (NE) cancer NE Non-NE Whole-cell patch-clamp electrophysiology was performed on the human SCLC cell line NCI-H889° and
characterised by poor prognosis and a high rate of AF1165 cells derived from a SCLC mouse model primary tumour®>. Experiments were performed as
metastasis’. NE cancers exhibit many of the molecular previously described?. Statistical analyses were performed in MATLAB®. For voltage-clamp data, leak
characteristics of neuronal cells, including upregulated subtraction was performed as |,.,,=G.,(V-E.,)- Boltzman curves were fit as G/G,,=1/(1+exp((V,,-V)/k).
expression of voltage-gated ion channels and membrane Statistical tests are one way ANOVA with Dunn-Sidék post-hoc correction unless otherwise stated, *p<0.05,
excitability. Recently, we demonstrated that the electrical **p<0.01, ***p<0.001, ****p<0.0001.
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* Characterise electrophysiology of SCLC lines and identify functional ion channel populations. =
 Explore selected ion channels as targets for modulating the excitability of SCLC cells. L 0 pA
* Refine a mathematical model for simulating SCLC cell excitability. 50 -90 mV — \/—-4 PA —2 pA

 Explore the impact of modulating excitability on SCLC cell function, proliferation, and metastasis.

Figure 2. Firing behaviour and major current components differ between prototypical human and mouse SCLC lines. || Figure 3. mSLCL line AF1165 displays both TTX-sensitive and

For NCI-H889 and AF1165: A) Current density elicited by V-step protocol. B) Membrane potential during |-step protocols. C) Resting || TTX-resistant fast-inactivating inward current.
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Characterisation of mouse SCLC line AF1165 voltage -gated currents and excitability
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Figure 8. Mathematical model simulates firing of AF1165 and impact of ion channel modulation. Figure 9. Depolarisation triggers capacitance transients indicative of vesicle fusion.
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MSCLC line AF1165 and hSCLC line NCI-H889 both exhibit robust firing but display
: different current and firing characteristics.
: « |CC staining and whole-cell patch-clamp electrophysiology suggest the functional
: presence of channels such as TREK-1, NALCN, and P2X and P2Y receptors in SCLC cells.
A tuneable mathematical model simulates the firing behaviour of SCLC cells in response
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