

Seal enhancers on the Qube 384: An alternative to F-

Catherine Hodgson¹, Edward Stevens¹, Anissa Bara², Beatrice Badone², Gary Clark¹

¹Metrion Biosciences Ltd, Granta Centre, Granta Park, Cambridge, CB21 6AL, UK ²Sophion Bioscience A/S, Industriparken 39, 2750 Ballerup, Denmark

Introduction

Gigaohm seals, or 'gigaseals', are imperative to patch clamp electrophysiology to enable good electrical access to the cell and high-quality recordings. These seals form through chemical bonds and electrostatic forces between the cell membrane and the glass pipette in manual patch clamp, or in the case of planar patch clamp, between the cell membrane and chip substrate¹. Planar patch clamp often requires the use of 'seal enhancers' to increase the resistances of these seals, with CaF2 being the most extensively used. It is hypothesised that high concentrations of extracellular Ca2+ and intracellular F- give rise to CaF₂ precipitate at the solution interface, fostering seal formation².

 CaF_2 as a seal enhancer, however, has limitations. F- is known to stimulate G-protein modulation of ion channels, altering channel properties³⁻⁶. Furthermore, use of F- is not optimal when recording from Ca²⁺-activated ion channels due to resultant unknown concentrations of free intracellular Ca²⁺.

In an effort to overcome these limitations, Metrion and Sophion collaborated to determine whether other insoluble salts can act as seal enhancers, or whether this property is unique to CaF₂.

Results

The solubility product constants (K_{sp}) of different Ca²⁺, Ba²⁺ and Sr²⁺ salts are compared in Table 1a. BaSO₄ and SrCO₃ have low K_{sp} values (with corresponding low solubility), similar to CaF₂. The PO₄³⁻ salts, however, have even lower K_{sp} values

and are highly insoluble. The ability of the different salt pairs to promote gigaseal formation was analysed using a CHO-hNav1.5 cell line and single hole QChips. The cells were resuspended in extracellular solutions containing 10 mM Ca2+, Ba²⁺ or Sr²⁺, whilst a selection of intracellular solutions was used containing hiah concentrations of the different anions. The concentration of each anion was adjusted to ensure consistent osmolarity across the intracellular solutions (~290 mOsm). Only BaSO₄ successfully facilitated the formation of gigaseals comparable to CaF_2 (Table 1b). Interestingly, these data suggest there is no correlation between salt K_{sp} values and their ability to foster gigaseal formation, particularly as neither SrCO₃ nor the PO₄³⁻ salts significantly increased seal resistances. Thus, the relationship between salt crystal formation and gigaseals remains unclear. Still, as SO_4^{2-} is not known to alter ion channel function or cellular signalling pathways, BaSO₄ represents a candidate alternative seal enhancer to CaF₂ with potential advantages.

Experiments were subsequently conducted to determine the minimal concentration of extracellular Ba²⁺ required for the formation of gigaseals. To this end, CHO-hNav1.5 cells were resuspended in extracellular solutions containing different concentrations of Ba²⁺, and seals formed in the presence of different levels of intracellular SO₄²⁻. High resistance gigaohm seals only formed with \geq 3 mM extracellular Ba²⁺ (Table 2). It is known, however, that Ba²⁺ ions block K⁺ channels in the µM-mM range⁷⁻⁹. Thus, whether this concentration is low enough to spare K⁺ channels from block is yet to be determined.

Table 1. Correlation between salt pair solubility product constants (K_{sp}) and gigaseal formation on Qube 384. No correlation was found between the solubility product constants (K_{sp}) of Ca²⁺, Ba²⁺ and Sr²⁺ salts (A) and their ability to foster gigaseal formation (B). Only BaSO₄ successfully facilitated the formation of gigaseals comparable to CaF₂. Despite the PO₄³⁻ salts having very low K_{sp} values and SrCO₃ having a similar K_{sp} value to CaF₂ and BaSO₄, these salts failed to produce gigaohm seals. Moderate seal resistances with PO₄³⁻ salts were transient and unstable. BaF₂ and SrF₂ were not studied as alternative seal enhancers to CaF₂ as they do not eliminate the use of F⁻. Median resistances calculated from 24 cells per salt pair.

Table 2. Resistances of seals formed using various concentrations of extracellular Ba²⁺ and intracellular SO₄²⁻. Gigaseals only formed with \geq 3 mM Ba²⁺ and in the presence of SO₄²⁻. Median resistances calculated from 24 or 48 cells per condition.

CHO-hNa _v 1.5		Median R _{membrane} (GΩ)			
Single hole experiments		0 mM SO ₄ 2-	50 mM SO₄ ²⁻	70 mM SO₄ ²⁻	90 mM SO₄ ²⁻
Ba²⁺ (mM)	0				
	0.01				
	0.03				
	0.1				
	0.3				
	1				
	3				
	5				
	10				

Effects of CaF_2 and $BaSO_4$ on $hNa_v 1.5$ biophysical properties

F is known to trigger G-protein modulation of ion channels and has been reported to affect the voltage-dependent kinetics of Nav channels⁴⁻⁶, ¹⁰⁻¹³. Single hole experiments were conducted to assess the effects of CaF₂ and BaSO₄ as seal enhancers on hNav1.5 biophysical properties.

CHO-hNa $_v$ 1.5 cells were resuspended in extracellular solutions containing 3, 5 or 10 mM Ca²⁺ or Ba²⁺, and seals formed in the presence of intracellular solutions containing various concentrations of F⁻ or SO4²⁻. A series of 3-s pulses between -100 mV and +50 mV in +10 mV intervals from a holding potential of -120 mV, followed by a 20-ms pulse at 0 mV was used to determine the voltage dependence of activation and inactivation of hNa $_v$ 1.5. There was a significant depolarising shift in hNa $_v$ 1.5 V_{0.5}

inactivation with increasing concentrations of intracellular F⁻ (Figure 1a). In contrast, increasing SO₄²⁻ concentration had no significant effect on V_{0.5} inactivation (Figure 1b). This suggests that, unlike the G-protein effects of F- on hNav1.5, SO₄²⁻ has no effect on intracellular signalling and does not impact channel biophysics. Of note, there was also a depolarising shift in $hNa_v 1.5 V_{0.5}$ inactivation with higher concentrations of extracellular Ca²⁺ and Ba²⁺ most likely due to surface potential screening effects (independent of G-protein modulation)¹⁴⁻¹⁵. In contrast to the voltage dependence of inactivation, there was no significant difference in hNa_v1.5 current amplitude or $V_{0.5}$ activation between the two seal enhancers at the different concentrations (data not shown).

Figure 1. Effects of CaF₂ and BaSO₄ on hNa_v1.5 channel biophysics. hNa_v1.5 V_{0.5} inactivation with different cation and anion concentrations (mean \pm S.D., N \geq 11). Increasing concentrations of intracellular F-caused a depolarising shift in V_{0.5} inactivation (A). In contrast, increasing concentrations of SO₄²⁻ had no effect on hNa_v1.5 V_{0.5} inactivation (B). One-way ANOVAs conducted within each cation group followed by Tukey's Honestly Significant Difference post-hoc tests: ** = p < .01; *** = p < .001; **** = p < .001. CaF₂ and BaSO₄ data taken from two separate experiments.

$hNa_v 1.5$ pharmacology: CaF₂ versus BaSO₄

pharmacology between CaF₂ and BaSO₄. Potency IC₅₀ values for a range of Na⁺ channel inhibitors were comparable against hNa_v1.5 between the different seal enhancers (Figure 2).

Next, multihole Qube 384 experiments were conducted to assess differences in $hNa_{\nu}1.5$

R

		ιC ₅₀ (μ/νι)		
	Multihole experiments	3 mM Ca ²⁺ + 120 mM F ⁻	5 mM Ba²+ + 70 mM SO₄²-	_ 100
	Amitriptyline	2.6	3.0	tio
	Tetracaine	3.7	5.5	idi to
	Bepridil	12.0	14.0	
	Verapamil	16.4	18.0	▶ CaF ₂
	Dapoxetine	9.1	11.6	• BaSO4
	Lidocaine	> 100	> 100	-10 -8 -6 -4 -2
	Phenytoin	> 100	> 100	Log [Amitriptyline] M

Figure 2. CaF₂ versus BaSO₄ – hNa_v1.5 pharmacology. A) Representative sweep plots (left) and currenttime (I-t) plots (right) for hNa_v1.5 inhibition by amitriptyline. There was no difference in cumulative inhibition of hNa_v1.5 by increasing concentrations of amitriptyline between CaF₂ and BaSO₄. B) Screening of a range of inhibitory compounds showed no difference in hNa_v1.5 pharmacology between CaF₂ and BaSO₄. Concentration-response curves for amitriptyline against hNa_v1.5 using CaF₂ or BaSO₄ as the seal enhancer (mean ± S.D., N = 12 wells per concentration for CaF₂, N = 8 wells per concentration for BaSO₄). CaF₂ and BaSO₄ data taken from two separate experiments.

$hCa_v 1.2$ pharmacology: CaF_2 versus $BaSO_4$

In a similar manner, the effects of CaF_2 versus $BaSO_4$ on $hCa_v1.2$ pharmacology were assessed using a HEK293-hCa_v1.2 cell line and multihole QChips. Using $BaSO_4$ as the seal enhancer changes the kinetics of the channel (Figure 3). Ca^{2+} influx with CaF_2 activates calmodulin, which binds to the intracellular regions of the channel, facilitating Ca^{2+} dependent inactivation¹⁶⁻¹⁷. Ba^{2+} is routinely used as a surrogate charge carrier in the study

of Ca²⁺ channels¹⁸. As expected, Ca²⁺dependent inactivation of hCa_v1.2 was eliminated when Ba²⁺ was used as a surrogate carrier ion with BaSO₄ as the seal enhancer, also giving rise to larger hCa_v1.2 current amplitudes (mean \pm S.D. – CaF₂: 0.79 \pm 0.58 nA (N = 11) versus BaSO₄: 1.29 \pm 0.89 nA (N = 56); Welch's *t*test: *t*₍₂₀₎ = 2.36; *p* < .05). Despite this, hCa_v1.2 pharmacology assessed using two inhibitory compounds, nifedipine and verapamil, was unaffected (Figure 4).

Figure 3. CaF₂ versus BaSO₄ – hCa_v1.2 kinetics. hCa_v1.2 exhibits Ca²⁺-dependent inactivation when CaF₂ is used as the seal enhancer (A). BaSO₄ as the seal enhancer (using Ba²⁺ as a surrogate carrier ion) confers loss of the Ca²⁺-dependent inactivation of hCa_v1.2 observed with CaF₂ (B). Example sweep plots derived from Sophion Analyzer v9.0.42.

Figure 4. CaF₂ versus BaSO₄ – hCa_v1.2 pharmacology. Mean \pm S.D. concentration-response curves for two common inhibitors against hCa_v1.2, nifedipine (A) and verapamil (B) (CaF₂: N = 2-5 wells per concentration; BaSO₄: N = 6-12 wells per concentration). Compound potencies (IC₅₀ values) did not differ between CaF₂ and BaSO₄.

Seal stability following removal of seal enhancers

Exchange of solutions following gigaseal formation would provide flexibility to assay different ion channels using optimal recording solutions. However, stability of gigaseals formed in the presence of BaSO₄ (3, 5 or 10 mM extracellular Ba²⁺ and 50 or 70 mM intracellular SO4²⁻) were not maintained upon exchange for corresponding concentrations of extracellular Ca²⁺ (Figure 5), whilst those formed using CaF₂ as the seal enhancer (3, 5 or 10 mM extracellular Ca²⁺ and 120 mM intracellular F-) were lost or greatly reduced following exchange for intracellular CI- across a range of concentrations (data not shown).

Figure 5. Ba²⁺-Ca²⁺ solution exchange. Example R_{membrane}-time plot showing loss of a gigaohm seal formed using 5 mM extracellular Ba²⁺ and 70 mM intracellular SO₄²⁻ upon exchange for 5 mM extracellular Ca²⁺.

Conclusion

In conclusion, although no correlation was found between salt K_{sp} values and gigaseal formation, BaSO₄ was identified as an equivalent seal enhancer to CaF_2 in planar patch clamp electrophysiology. BaSO₄ and CaF₂ were characterised across two different ion channels, hNav1.5 and hCav1.2. Whilst increasing concentrations of F- caused depolarising shifts in the voltage dependence of inactivation of hNav1.5, SO4²⁻ had no effects on hNav1.5 biophysical properties. Additionally, there was no difference in the pharmacological effects of inhibitory compounds against hNav1.5 or $hCa_v 1.2$ between CaF_2 and $BaSO_4$ seal enhancers. BaSO₄ could be used as the seal enhancer when recording from non-K+conducting Ca2+-activated channels, such as the Ca2+-activated CI- channel TMEM16A, allowing more accurate estimation of the free intracellular Ca²⁺ concentration.

Methods

Experiments were conducted using a Sophion Bioscience Qube 384 with QChip 384 (single hole) and QChip 384X (multihole) consumables. Temperature was maintained at 22 °C using the Qube temperature control module.

Analysis was conducted using Sophion Analyzer v9.0.42 and GraphPad Prism v10.2.2.

CHO-hNav1.5 and HEK293-hCav1.2 cell lines were provided by Metrion Biosciences.

All compounds were tested at: 0.001, 0.01, 0.1, 1, 10 and 100 µM.

Acknowledgements

Thank you to Andrew James for ideas and edits, and to the Metrion Biosciences cell culture team, Aqila March, Megan Pritchard, Jack O'Donnell and Joana Rocha.

References

¹ Suchyna, T. M., Markin, V. S., & Sachs, F. (2009). Biophysics and structure of the patch and the gigaseal. *Biophysical Journal*, 97(3), 738-747.

² Løjkner, L. D., Lindqvist, A., Sauter, D. R., & Rosholm, K. R. (2023). Seal enhancer. US 11692994 B2.

³ Vargas, G., Yeh, T. Y. J., Blumenthal, D. K., & Lucero, M. T. (1999). Common components of patch-clamp internal recording solutions can significantly affect protein kinase A activity. *Brain Research*, 828(1-2), 169-173.

⁴ Rapedius, M., Obergrussberger, A., Humphries, E. S. A., Scholz, S., Rinke-Weiss, I., Goetze, T. A., Brinkwirth, N., Rotordam., M. G., Strassmaier, T., Randolph, A., Friis, S., Liutkute, A., Seibertz, F., Voigt, N., & Fertig, N. (2022). There is no F in APC: using physiological fluoride-free solutions for high throughput automated patch clamp experiments. *Frontiers in Molecular Neuroscience*, 15, 982316.

⁵ Antonny, A., Sukumar, M., Bigay, J., Chabre, M., & Higashijima, T. (1993). The mechanism of aluminum-independent G-protein activation by fluoride and magnesium. 31P NMR spectroscopy and fluorescence kinetic studies. *Journal of Biological Chemistry*, 268(4):2393-2402.

⁶ Vincent, S., Brouns, M., Hart, M. J., & Settleman, J. (1998). Evidence for distinct mechanisms of transition state stabilization of GTPases by fluoride. Proceedings of the National Academy of Sciences of the United States of America, 95(5):2210-2215.

⁷ Armstrong, C. M., Swenson, R. P., & Taylor, S. R. (1982). Block of squid axon K channels by internally and externally applied barium ions. *Journal of General Physiology*, 80(5), 663-682.

⁸ Tokimasa, T. & Nishimura, T. (1997). Actions of barium on rapidly inactivating potassium current in bullfrog sympathetic neurons. *Neuroscience Letters*, 236(1), 37-40.

⁹ Kotani, S., Hirasawa, T., Suzuki, T., Sato, K., Sakakibara, M., & Tokimasa, T. (2000). Mechanisms underlying the M-current block by barium in bullfrog sympathetic neurons. *Neuroscience Letters*, 285(1), 1-4.

¹⁰ Meadows, L. S., Chen, Y. H., Powell, A. J., Clare, J. J., & Ragsdale, D. S. (2002). Functional modulation of human brain Nav1.3 sodium channels, expressed in mammalian cells, by auxiliary beta 1, beta 2 and beta 3 subunits. *Neuroscience*, 114(3), 745-753.

¹¹ Rugiero, F., Mistry, M., Sage, D., Black, J. A., Waxman, S. G., Crest, M., Clerc, N., Delmas, P., & Gola, M. (2003). Selective expression of a persistent tetrodotoxin-resistant Na⁺ current and Na_v1.9 subunit in myenteric sensory neurons. The Journal of Neuroscience, 23(7), 2715-2725.

¹² Coste B., Osorio, N., Padilla, F., Crest, M., & Delmas, P. (2004). Gating and modulation of presumptive Na_v1.9 channels in enteric and spinal sensory neurons. *Molecular and Cellular Neuroscience*, 26(1), 123-134.

¹³ Jarecki B. W., Jackson J. O., II, Cummins T. R., Sheets P. L. (2008). Paroxysmal extreme pain disorder mutations within the D3/S4-S5 linker of Nav1.7 cause moderate destabilization of fast inactivation. *The Journal of Physiology*, 586(17), 4137–4153.

¹⁴ Hille, B., Woodhull, M., & Shapiro, B. I. (1975). Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH. *Philosophical Transactions of the Royal Society B: Biological Sciences*. 270(908), 301-318.

¹⁵ Hahin, R. & Campbell, D. T. (1983). Simple shifts in the voltage dependence of sodium channel gating caused by divalent cations. *Journal of General Physiology*. 82(6), 785-805.

¹⁶ Kameyama M., Minobe, E., Shao, D., Xu J., Gao, Q., & Hao, L. (2023). Regulation of cardiac Ca_v1.2 channels by calmodulin. International Journal of Molecular Sciences, 24(7), 6409.

¹⁷ Sang, L., Vieira, D. C. O., Yue, D. T., Manu, B. J., & Dick, I. E. (2021). The molecular basis of the inhibition of Cav1 calcium-dependent inactivation by the distal carboxy tail. *Journal of Biological Chemistry*, 296, 100502.

¹⁸ Ren, M., Randolph, A. L., Alvarez-Baron, C., Guo, D., Tran, P. N., Thiebaud, N., Sheng, J., Zhao, J., & Wu, W. (2022). Experimental factors that impact Cav1.2 channel pharmacology – effects of recording temperature, charge carrier, and quantification of drug effects on the step and ramp currents elicited by the "stepstep-ramp" voltage protocol. *PLoS One*, 17(11), e0276995.