

Development and Evaluation of Novel Solution Pairs to Enhance Seal Resistance in Automated Patch Clamp Experiments

Introduction

Gigaohm seals, or 'gigaseals', are crucial for patch clamp electrophysiology, ensuring excellent electrical access to cells to enable high-quality recordings. These seals form through chemical bonds and electrostatic forces between the cell membrane and the glass pipette in manual patch clamp, or between the cell membrane and chip substrate in planar patch clamp. Planar patch clamp often employs 'seal enhancers' to increase seal resistances, with CaF. being the most commonly used. It is hypothesized that high extracellular Ca²⁺ and intracellular F⁻ concentrations lead to CaF, precipitate formation at the solution interface, promoting seal formation. However, CaF, as a seal enhancer has limitations. F⁻ interacts with various internal components such as protein kinase A, adenylate cyclase, and lipid phosphatases, which can affect the biophysical properties of some ion channels. Additionally, F⁻ is not ideal when recording from Ca²⁺- activated ion channels due to the resulting unknown concentrations of free intracellular Ca²⁺.

In an effort to overcome these limitations, Sophion developed new solution pairs in 2017 that foster seal formation (Patent: WO2018100206A1). Building on this technology, Metrion and Sophion collaborated to further determine whether other insoluble salts can act as seal enhancers and how these solution pairs affect the biophysical properties and pharmacology of the investigated ion channels.

Conclusion

- BaSO, was identified as an equivalent seal enhancer to CaF₂.
- The two solution pairs were characterized across two ion channels: $hNa_v 1.5$ and $hCa_v 1.2$.
- Intracellular F⁻ caused depolarizing shifts in the voltage dependence of inactivation of hNa_v1.5 where no such effects were observed with SO_{a}^{2} in the intracellular solution.
- No difference in pharmacological effects of inhibitory compounds against hNa_v1.5 or hCa_v1.2 was observed between the two solution pairs, CaF_{2} and $BaSO_{4}$.
- BaSO₄ is well-suited as a seal enhancer for recording from non-K⁺-conducting Ca²⁺-activated channels, such as TME-M16A. In particular as $BaSO_4$ allows more accurate estimation of free intracellular Ca²⁺ concentration.

Material and methods

Experiments were conducted at 22°C using a Sophion Bioscience Qube 384 with QChip 384 (single hole) and QChip 384X (multihole) consumables.

Analysis was conducted using Sophion Analyzer v9.0.42 and GraphPad Prism v10.2.2.

CHO-hNa, 1.5 and HEK293-hCa, 1.2 cell lines were provided by Metrion Biosciences.

All compounds were tested at: 0.001, 0.01, 0.1, 1, 10 and 100 µM.

Results

1 x 10⁻⁵ Sparingly soluble

10 mМ

0 MΩ

Ba²⁺ (mM)

0 MΩ

Catherine Hodgson¹, Edward Stevens¹, Andrew James¹, Anissa Bara², Beatrice Badone², Damian Bell², Daniel Sauter², Gary Clark¹

Table 1: Correlation between salt pair solubility product constants (K_{sp}) and gigaseal formation on Qube 384. No correlation was found between the solubility product constants (K_{sp}) of Ca²⁺, Ba²⁺ and Sr²⁺ salts (A) and their ability to foster gigaseal formation (B). Despite the PO_4^{3-} salts having very low K_{sp} values and $SrCO_3$ having a similar K_{sp} value to CaF_2 and $BaSO_4$, these salts failed to produce gigaohm seals. Moderate seal resistances with PO_4^{3-} salts were transient and unstable. Median resistances calculated from 24 cells per salt pair.

Insoluble

Ω	Median R _{membrane} (GΩ)				
	120 mM F⁻	90 mM SO ₄ ²⁻	90 mM CO ₃ ²⁻	70 mM PO ₄ ³⁻	90 mM C ₂ O ₄ ²⁻
Ca ²⁺					
Ba ²⁺					
Sr ²⁺					
> 1 GΩ					

Table 2: Resistances of seals formed using various concentrations of extracellular Ba²⁺ and intracellular SO₄²⁻. Gigaseals only formed with \geq 3 mM Ba²⁺ and in the presence of SO₄²⁻. Median resistances calculated from 24 or 48 cells per condition.

Fig. 1: Effects of CaF₂ and BaSO₄ on hNa_v1.5 channel biophysics. hNa_v1.5 V_{0.5} inactivation with different cation and anion concentrations (mean \pm S.D.; N \geq 11). Increasing concentrations of intracellular F^{-} caused a depolarizing shift in V_{0.5} inactivation (A). In contrast, increasing concentrations of SO₄²⁻ had no effect on hNav1.5 V_{0.5} inactivation (B). One-way ANOVAs conducted within each cation group followed by Tukey's Honestly Significant Difference post-hoc tests: ** = p < .01; *** = p < .001; **** = p < .0001.

Fig. 2: CaF₂ versus BaSO₄ – hNa_v1.5 pharmacology. (A) Representative sweep plots (left) and current-time (I-t) plots (right) for hNa, 1.5 inhibition by amitriptyline. There was no difference in cumulative inhibition of $hNa_v 1.5$ by increasing concentrations of amitriptyline between CaF₂ and BaSO₄. (B) Screening of a range of inhibitory compounds showed no difference in hNa_v1.5 pharmacology between CaF₂ and BaSO₄. Concentration-response curves for amitriptyline against hNa_v1.5 using CaF₂ or BaSO₄ as the seal enhancer (mean \pm S.D.; N = 12 wells per concentration for CaF₂, N = 8 wells per concentration for $BaSO_{a}$).

v9.0.42.

Fig.4: CaF₂ versus BaSO₄ – hCa₁, 1.2 pharmacology. Mean \pm S.D. concentration-response curves for two common inhibitors against hCa_v1.2, nifedipine (A) and verapamil (B) (CaF₂: N = 2-5 wells per concentration; BaSO₄: N = 6-12 wells per concentration). Compound potencies (IC₅₀ values) did not differ between CaF₂ and BaSO₄.

¹Metrion Biosciences Ltd, Granta Centre, Granta Park, Cambridge, CB21 6AL, UK ²Sophion Bioscience A/S, Industriparken 39, 2750 Ballerup, Denmar

Fig.3: CaF₂ versus BaSO₄ – hCa_v1.2 kinetics. hCa_v1.2 exhibits Ca²⁺-dependent inactivation when CaF_2 is used as the seal enhancer (A). BaSO₄ as the seal enhancer (using Ba²⁺ as a surrogate carrier ion) (B) confers loss of the Ca²⁺-dependent inactivation of $hCa_v 1.2$ observed with CaF₂. Example sweep plots derived from Sophion Analyzer

Sophion Qube 384

Sophion's automated patch clamp system **Qube** 384 for high performance and high-throughput ion channel characterization and screening.

